Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes.

نویسندگان

  • Armindo Salvador
  • Michael A Savageau
چکیده

Why do the activities of some enzymes greatly exceed the flux capacity of the embedding pathways? This is a puzzling open problem in quantitative evolutionary design. In this work we investigate reasons for high expression of a thoroughly characterized enzyme: glucose 6-phosphate dehydrogenase (G6PD) in human erythrocytes. G6PD catalyses the first step of the pathway that supplies NADPH for antioxidant defense mechanisms. Normal G6PD activity far exceeds the capacity of human erythrocytes for a steady NADPH supply, which is limited upstream of G6PD. However, the distribution of erythrocyte G6PD activity in human populations reveals a selective pressure for maintaining high activity. To clarify the nature of this selective pressure, we studied how G6PD activity and other parameters in a model of the NADPH redox cycle affect metabolic performance. Our analysis indicates that normal G6PD activity is sufficient but not superfluous to avoid NADPH depletion and ensure timely adaptation of the NADPH supply during pulses of oxidative load such as those that occur during adherence of erythrocytes to phagocytes. These results suggest that large excess capacities found in some biochemical and physiological systems, rather than representing large safety factors, may reflect a close match of system design to unscrutinized performance requirements. Understanding quantitative evolutionary design thus calls for careful consideration of the various performance specifications that biological components/processes must meet in order for the organism to be fit. The biochemical systems framework used in this paper is generally applicable for such a detailed examination of the quantitative evolutionary design of gene expression levels in other systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were ...

متن کامل

INHIBITION OF HUMAN ERYTHROCYTE GLUCOSE 6-PHOSPHATE DEHYDROGENASE ACTIVITY BY DEHYDROEPIANDROSTERONE AND RELATED STEROIDS.

The inhibitory effects of several steroids on G6PD activity using intact erythrocytes are reported. Incubation of whole blood with dehydroepiandrosterone (DHEA) resulted in 42% and 12% inhibition in the enzyme activity in the presence and absence of oxygen, respectively. Addition of epinephrine and/or aminophylline into the incubation medium caused further enzyme inhibition suggesting a po...

متن کامل

Molecular Characterization of Cosenza Mutation among Patients with Glucose-6-Phosphate Dehydrogenase Deficiency in Khuzestan Province, Southwest Iran

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymatic disorders in human, increases the vulnerability of erythrocytes to oxidative stress. It is also characterized by remarkable molecular and biochemical heterogeneity. According to previous investigations, G6PD Cosenza (G1376C) is a common G6PD mutation in some parts of Iran. Therefore in the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003